Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

f1(g1(x)) -> g1(f1(f1(x)))
f1(h1(x)) -> h1(g1(x))
f'3(s1(x), y, y) -> f'3(y, x, s1(x))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f1(g1(x)) -> g1(f1(f1(x)))
f1(h1(x)) -> h1(g1(x))
f'3(s1(x), y, y) -> f'3(y, x, s1(x))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

F1(g1(x)) -> F1(f1(x))
F'3(s1(x), y, y) -> F'3(y, x, s1(x))
F1(g1(x)) -> F1(x)

The TRS R consists of the following rules:

f1(g1(x)) -> g1(f1(f1(x)))
f1(h1(x)) -> h1(g1(x))
f'3(s1(x), y, y) -> f'3(y, x, s1(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F1(g1(x)) -> F1(f1(x))
F'3(s1(x), y, y) -> F'3(y, x, s1(x))
F1(g1(x)) -> F1(x)

The TRS R consists of the following rules:

f1(g1(x)) -> g1(f1(f1(x)))
f1(h1(x)) -> h1(g1(x))
f'3(s1(x), y, y) -> f'3(y, x, s1(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F'3(s1(x), y, y) -> F'3(y, x, s1(x))

The TRS R consists of the following rules:

f1(g1(x)) -> g1(f1(f1(x)))
f1(h1(x)) -> h1(g1(x))
f'3(s1(x), y, y) -> f'3(y, x, s1(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


F'3(s1(x), y, y) -> F'3(y, x, s1(x))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(F'3(x1, x2, x3)) = 2·x1 + 2·x2   
POL(s1(x1)) = 2 + 2·x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f1(g1(x)) -> g1(f1(f1(x)))
f1(h1(x)) -> h1(g1(x))
f'3(s1(x), y, y) -> f'3(y, x, s1(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

F1(g1(x)) -> F1(f1(x))
F1(g1(x)) -> F1(x)

The TRS R consists of the following rules:

f1(g1(x)) -> g1(f1(f1(x)))
f1(h1(x)) -> h1(g1(x))
f'3(s1(x), y, y) -> f'3(y, x, s1(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


F1(g1(x)) -> F1(f1(x))
F1(g1(x)) -> F1(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(F1(x1)) = x1   
POL(f1(x1)) = x1   
POL(g1(x1)) = 2 + x1   
POL(h1(x1)) = 1   

The following usable rules [14] were oriented:

f1(g1(x)) -> g1(f1(f1(x)))
f1(h1(x)) -> h1(g1(x))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f1(g1(x)) -> g1(f1(f1(x)))
f1(h1(x)) -> h1(g1(x))
f'3(s1(x), y, y) -> f'3(y, x, s1(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.